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Abstract. In this work we extend the recently considered toy model of Weierstrass or Lévy walks with
varying velocity of the walker [1] by introducing a more realistic possibility that the walk can be occa-
sionally intermitted by its momentary localization; the localizations themselves are again described by the
Weierstrass or Lévy process. The direct empirical motivation for developing this combined model is, for
example, the dynamics of financial high-frequency time series or hydrological and even meteorological ones
where variations of the index are randomly intermitted by flat intervals of different length exhibiting no
changes in the activity of the system. This combined Weierstrass walks was developed in the framework of
the non-separable generalized continuous-time random walk (GCTRW) formalism developed recently [2].
This approach makes it possible to study by stochastic simulations the whole spatial-temporal range while
analytically we can study only the initial, pre-asymptotic and asymptotic regions (but not the interme-
diate one). Our approach is possible since the Weierstrass walks is a geometric superposition of regular
random walks each of which can be simply treated by stochastic simulations. This non-Markovian two-
state (walking-localization) model makes possible to cover by the unified treatment a broad band of known
up to now types of non-biased diffusion from the dispersive one over the normal, enhanced, ballistic, and
hyperdiffusion up to the Richardson law of diffusion which defines here a part of the borderline which sep-
arates the latter from the ‘Lévy ocean’ where the total mean-square displacement of the walker diverges.
We observed that anomalous diffusion is characterized here by three fractional exponents: temporal one
characterizing the localized state and two, temporal and spatial ones, characterizing the walking state.
By considering successive dynamic (even) exponents we constructed a series of different diffusion phase
diagrams on the plane defined by the spatial and temporal fractional dimensions of the walking state. To
adapt the model to the description of empirical data (or discrete time series) which are collected with a
discrete time-step we used in the continuous-time series produced by the model a discretization procedure.
We observed that such a procedure generates, in general, long-range non-linear autocorrelations even in
the Gaussian regime, which appear to be similar to those observed, e.g., in the financial time series [3–6],
although single steps of the walker within continuous time are, by definition, uncorrelated. This suggests
a surprising explanation alternative to the one proposed very recently (cf. [7] and Refs. therein) although
both approaches involve related variants of the well-known CTRW formalism applied yet in many different
branches of knowledge [8–10].

PACS. 05.45.Tp Time series analysis – 02.50.-r Probability theory, stochastic processes,
and statistics – 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion

1 Introduction

In the last few years an increased effort of statistical physi-
cists has been observed in understanding the long-term
power-law correlations present in the financial time se-
ries [11–17]. This scientific interest stems, perhaps, from
the fact that (i) there is a wealth of distinctive statisti-
cal data available which suggest that the dynamics of fi-
nancial markets is universal (or scale invariant); (ii) while
correlations of price fluctuations decay rapidly in time,
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the magnitude of fluctuations (or their even non-linear
function) exhibits long-term correlations. These reasons
stimulated us to develop a sufficiently realistic and gen-
eral toy model [2] for the analysis of empirical time-series
reflecting both an active and passive behavior of a com-
plex system in continuous time. This type of time-series
consists of oblique intervals randomly intermitted by flat
ones. The model belongs to the Lévy walks type char-
acterized by finite velocity of the walker displacement
and can serve as a test one for detrending fluctuation



496 The European Physical Journal B

Fig. 1. Single realization (dashed curve) by the Monte Carlo simulation in continuous time of the Weierstrass random motions
(oblique intervals) occasionally intermitted by localizations (flat intervals) within the non-Gaussian regime; its discretized
representation for the discretization time-step ∆t = 10 [min.] is given by the solid curve. Our algorithm of the Monte Carlo
simulation is described in Section 4 and the applied parameters are presented in Tables 1 and 2.

analysis [18] (to verify whether trend was correctly de-
tected and removed from the empirical data).

In this paper we used hierarchical spatial-temporal
coupling (roughly justified in Sect. 2) to describe the com-
bined physical picture exhibiting both delocalized Wei-
erstrass random motions and localizations that are also
described by the Weierstrass process. We developed a
complex but more realistic version of the Weierstrass
walks with varying velocity [2] namely, Weierstrass walks
randomly intermitted by localizations (WWRIL). In the
frame of this model the walker moves continuously at a
constant velocity between the consecutive turning points
where he can be occasionally and temporarily localized
and then chooses direction at random, walking in princi-
ple, with an other constant velocity till the next turning
point where again a localization event occurs with finite
probability (cf. dashed curve shown in Fig. 1; we formally
used the notation characteristic for financial market where
the stock price is equivalent to the walker displacement).
This means that at each step there is a finite probabil-
ity that the walker is localized or delocalized; the walker
doesn’t walk all the time and his walking is randomly in-
termitted by periods of immobilization. When the proba-
bility of this localized state occurring vanishes this model
simply tends to the Weierstrass walks with varying ve-
locity one considered earlier [1]. Several alternative ap-
proaches were developed very recently in the context of
long-term memory or autocorrelation within the CTRW
formalism, cf. [7,19] and references therein.

As an application we use the model to create, by our
Monte Carlo simulation (considered in Sect. 4), a single

trajectory of the walker for any continuous time t. Next
we discretize this time by using the constant discretization
step ∆t (which is the external parameter of the procedure)
finding time moments tn = n∆t, n = 0, 1, . . .; we store
the position of the walker on the trajectory only at each
discrete moment tn. We treat the set of data obtained
by this procedure as our basic empirical time series (cf.
solid curve shown in Fig. 1 where we used, for example,
∆t = 10 [min.] while ∆t = 1 was identified with one trad-
ing min.). In fact, we considered, within the Gaussian and
non-Gaussian regimes, the high-frequency data stored at
each trading minute (as by assuming longer ∆t we loose
too many details of the original trajectory (cf. again plot
shown in Fig. 1). For example, in Figure 1 was present the
time series obtained within the non-Gaussian regime (cf.
the open circle (◦) on the diffusion phase diagram shown
in Fig. 3); the Gaussian time-series (presented, e.g., by
the full circle (•) on the diffusion phase diagram shown
in Fig. 3) looks analogously but has, however, a geometri-
cally narrowed vertical span. By using these time series we
compared long-term autocorrelations of the absolute vari-
ations of the walker displacement present for both stochas-
tic regimes (cf. Fig. 5).

Our results are particularly intriguing for the Gaussian
regime where short in time correlated variations of the
walker displacement (cf. solid curve C plotted in Fig. 4)
coexist with the long-term autocorrelations of the absolute
variations of the walker displacement (cf. solid curve K
plotted in Fig. 4). This situation appears to be analogous
to those often observed in different empirical time series,
particularly in high-frequency financial ones [3–6].
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Fig. 2. The price variation, ∆X, vs. trading time tn =
n∆t, n = 0, 1, . . . , obtained from our discretized high-
frequency data stored for the Weierstrass walks randomly in-
termitted by temporary localizations. Several levels of the
stochastic hierarchy of ∆X (located within the band of −1 ≤
∆X ≤ 1) are well seen, for example, for one trading week.

2 Basic definitions and quantities

In this paper we pay attention mainly to the statistics
regarding single steps of the walker, i.e. waiting-time dis-
tributions and sojourn probabilities for walking and lo-
calization states; they constitute a foundation both for
our generalized continuous-time random walk formalism
(GCTRW)1 and the Monte Carlo algorithm. Basing on
the hierarchical structure of these quantities we define the
effective Monte Carlo algorithm for simulation of the two-
state (walking and localization) Weierstrass walks.

After discretization of time, the stochastic hierarchical
structure is also well seen, for example for the dynamics
of the variations of the stock price, ∆X , shown in Fig-
ure 2. However, we prove in this paper that these two
descriptions of random walks (in continuous and in dis-
crete times) are, in our case, essentially different even for
asymptotic long times. The main difference arises from
the fact that in the continuous time the single steps of
the walker are uncorrelated (for non-vanishing time inter-
vals) both in the linear and non-linear sense, while after
discretization of time the single steps are at least non-
linearly correlated. This can be understood by assuming
that the discretization procedure defines a kind of random

1 The full GCTRW formalism is developed in a separate
work; it is a straightforward generalization of our previous
works [1] considering continuous-time Weierstrass walks with
varying velocity. In the present paper we exploit only the basic
elements of the GCTRW formalism necessary to consider the
non-linear autocorrelations.

walk on a basic random walk which automatically intro-
duces correlations even if the basic random walk were to
be uncorrelated.

Walking state. In our recent series of papers [1] we con-
sidered in detail the waiting-time distribution and sojourn
probability (which are the basic ones), as well as other
relevant quantities for the walking state, where the walker
moves with a fixed velocity between the turning points
though, in general, this velocity can vary from one turn-
ing point to another. We adopt for the walking state the
waiting-time distribution which exhibits spatial-temporal
coupling, reflecting the hierarchical character of the frac-
tional random walk,

ψwalk(x, t) =
1
2

∞∑
j=0

w(j)[δ(x − v0v
jt) + δ(x+ v0v

jt)]

× 1
τ0τ j

exp(−t/τ0τ j), (1)

where the weight w(j) is defined as follows,

w(j) = (1 − 1
N

)
1
N j

, N > 1, j = 0, 1, 2, . . . , (2)

and fulfils the normalization condition
∑∞

j=0 w(j) = 1.
As it is seen, the kinematics within the walking state

is defined by piece-wise constant velocity, v0vj , and the
mean time, τ0τ j , needed to perform the single step (in
the frame of the jth level of hierarchy); hence, the aver-
age distance which the walker is able to pass within this
step is given by b0bj = v0τ0v

jτ j . We assumed that dimen-
sionless mean-time, τ > 1, and dimensionless distance,
b(= vτ) > 1 (where b0 = v0τ0), which means that longer
single steps which last (on the average) longer are less
probable. These steps can be made both with (dimension-
less) velocity: (i) v < 1 or (ii) v > 1 (the marginal case
v = 1 is not discussed here). In case (i) the smaller velocity
is less probable in contrast to case (ii), where less proba-
ble is the larger velocity. Of course, the walker’s single-step
displacement x made during the current time interval t is
given by x = v0v

jt.
The reminiscence of the hierarchy of velocities, for ex-

ample, for case (i) is presented in Figure 2 by using the
discrete variable ∆X(tn+1)(= X(tn + ∆t) − X(tn)). As
we expected, the variance ∆X is restricted in this case to
the band limited by its maximal value |∆X | = b0(= 1)
as |∆X | = v0(= 1)vj(=0)(= 1)∆t(= 1), which also con-
stitutes the zero-level of the hierarchy. Further levels of
the hierarchy (contained within this band) are defined by
the index j = 1, 2, . . ., (note that Fig. 2 was obtained,
by way of example, for dimensionless velocity v only a
little smaller than the marginal value equal to 1, i.e.
v = b/τ = 0.992, where b = 2.5 and τ = 2.52).

In this paper we focused on case (i) as it seems to be
most proper from the point of view of the situation which
we consider in this paper; however, both cases are again
compared in Section 3.

In an analogous way we can write the expression for
the sojourn probability, where only the frequency 1/τ0τ j
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under the sum over j is removed in (1) (cf. also definitions
in [1]).

Localized state. The waiting-time distribution for tem-
poral localization of the walker can be assumed in the form
analogous to (1) by putting formally the velocity v0 = 0,

ψloc(x, t) = δ(x)ψloc(t) (3)

where

ψloc(t) =
∞∑

j=0

w′(j)
1

τ ′0(τ ′)j
exp(−t/τ ′0(τ ′)j), (4)

while the weight w′(j) is analogously defined as w(j); the
other parameters N ′(> 1), τ ′0, τ

′(> 1) can differ, in gen-
eral, from the corresponding prototypes of the walking
state. As it is seen, the moderation of the effective kine-
matics of the walker is also governed by the (dimension-
less) mean-time τ ′ of the localization and the factor N ′.

Analogously, we can define the sojourn probability by
removing the frequency 1/τ ′0(τ ′)j from under the sum over
j in (4).

It should be emphasized that single steps of the walker
(both walkings and localizations) occurring in the contin-
uous time are only δ-correlated.

Combined waiting-time distribution. Our model is ba-
sed on: (i) the total waiting-time distribution which is a
weighted sum of the above two conditional waiting-time
distributions presenting walking, ψwalk(x, t), and localized
ψloc(x, t) states

ψ(x, t) = pwalkψwalk(x, t) + plocψloc(x, t), (5)

as well as (ii) on the total sojourn probability, which
is again an analogous weighted sum of two conditional
sojourn probabilities representing the walking and local-
ized states; the weights obey, of course, the normaliza-
tion: pwalk + ploc = 1. In the extreme case pwalk = 1 the
present model transforms to our previous one [1]; the role
of weights is considered in Section 3.

Thanks to definitions (1–5) our algorithm makes it
possible to construct: (i) single stochastic trajectories of
the hierarchical random walk for any continuous time
and next to perform (ii) the time discretization proce-
dure. In this paper we focus only on the non-linear long-
term autocorrelations found in the discretized version of
the continuous-time Weierstrass walks with varying veloc-
ity randomly intermitted by Weierstrass temporary local-
izations. The present work has a phenomenological and
numerical character since the full version of the model,
which is a straightforward extension of our previous one [1]
(where no localizations are admitted), is developed else-
where.

3 Diffusion phase diagrams

Closed analytical representations of the statistics consid-
ered in Section 2 for the asymptotic time make it possible
to construct (within the GCTRW formalism) a convenient

classification scheme for different types of the continuous-
time Weierstrass walks with varying velocity randomly
intermitted by temporary Weierstrass localizations2. Dif-
ferent diffusion phases are treated as different universal-
ity classes defined by different dynamic exponents. This
means that the asymptotic time-behaviour of an even mo-
ment, 〈X2m(t)〉, of the total displacement of an arbitrary
order is our basic tool. It can be proved that this quan-
tity is finite for finite time if and only if the following
constraint is obeyed

1
β
<

1
2m

+
1
α
, m = 1, 2, . . . , (6)

and then (for t� τ0) this quantity assumes the form,

〈X2m(t)〉 ≈ (2m)!
Dm

Γ (1 + ηm)
tηm , m = 1, 2, . . . , (7)

where ηm is a dynamic (fractional) exponent and Dm a
fractional coefficient (expressed in [2] but doesn’t appear
in explicit form in the present work). Expression (7) is a
generalization of analogous ones obtained earlier for the
subdiffusion [20] and very recently, within an exact frac-
tional material derivative model, for subballistic superdif-
fusion [28].

In Figure 3 we present the resultant diffusion phase
diagram valid for arbitrary even orders (m = 1, 2, . . .) of
displacement defined for the temporal exponent (which
characterizes localization) α′(= lnN ′/ ln τ ′) > 1. Note
that this particular diffusion phase diagram was given,
for example, for index m = 2. The formulas for dynamic
exponent ηm are shown in the figure in dependence on the
temporal exponent α(= lnN/ ln τ) and the spatial one
β(= lnN/ ln b). This infinite set of dynamic exponents
ηm, m = 1, 2, . . ., defines the corresponding set of diffu-
sion phase diagrams while the concrete dependence of ηm

on α and β (and α′ when α′ < 1) defines the concrete
diffusion phase (cf. Fig. 3).

By putting m → ∞ in inequality (6) and in expres-
sions enclosed to the diffusion phase diagram shown in
Figure 3, we can conclude that only for the case where
v < 1 (which is equivalent to β > α) all moments of the
walker displacement are finite for finite time. Neverthe-
less, the propagator in this range of parameters can be,
in general, non-Gaussian. The process can be classified as
the Gaussian one if and only if the spatial dynamic ex-
ponent β > 2 (see Fig. 3 where index m = 1 should be
assumed) as then the first dynamic exponent (called the
diffusion one) η1 = 1.0.

The above considerations suggest, in the context of the
financial market, that the kinetics of a given asset can be
classified as a burden of higher risk if its (dimensionless)
velocity v > 1. Moreover, we can define the order of this
risk as the lowest order of the moment of the total dis-
placement which diverges for finite time.

2 This classification is analogous to that introduced in our
earlier paper [1] for the continuous-time Weierstrass walks with
varying velocity.
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Fig. 3. Non-stationary diffusion phase diagram of 2m-order (where m = 1, 2, . . . , while here, e.g., m = 2) for α′ > 1. The region
below the bold tangent straight line relates to a finite (2m)th moment of displacement; for the remaining region this moment
is infinite.

4 Hierarchical Monte Carlo simulation

This algorithm is a straightforward generalization of our
previous one [1] to more realistic and more spread situa-
tions. The initial step of our efficient algorithm is the deci-
sion which states (localized or walking) should the walker
occupy in the current step; this is decided simply by draw-
ing with the proper probability ploc or pwalk.

If we have found the state, we can perform essen-
tial next step by choosing index j with probability p(j)
given by

p(j) =

{
w(j), for walking state

w′(j), for localized state.

More precisely, we simulate a probabilistic game of ran-
dom tossing of a coin. We define as a single success the
situation where the coin falls to its obverse side with prob-
ability 1

M , where parameter M is defined as

M =

{
N, for walking state

N ′, for localized state.

As a single defeat, occurring of course with probability
1 − 1

M , we define the opposite situation when the coin
falls to its reverse side. We always toss our coin till the first
defeat; then the number j of the successive successes is just
the index we are looking for. Thus τ0τ j , v0v

j and b0bj or
τ ′0(τ ′)j are calculated (for simplicity, in all calculations
we assumed τ0 = 1, τ ′0 = 1, v0 = 1, b0 = 1). This is
an efficient procedure since no drawing step is lost and
always an index j is found.

In the next step of our procedure we draw from the
Poisson distribution 1

τ j exp(− θ
τ j ) or 1

(τ ′)j exp(− θ
(τ ′)j ) the

Table 1. Exponents α′, α, β, η1 and η2 chosen from two
different places of the diffusion phase diagram.

Notation α′ α β η1 η2

◦ 4/3 3/2 1.51 1.48 3.47
• 4/3 3/2 3.42 1.0 2.0

elapsed time interval θ of the particle remaining in the
drawn state j. This time is needed for the walker to pass
the distance v0vjθ or to remain immobile over this time
interval. Note that a very long one-step walk or staying at
a chosen state j could then occur.

The total performance consists of several repetitions
of the above two basic steps and makes it possible to sim-
ulate time series coming from both non-stationary and
stationary Weierstrass or Lévy walks intermitted by tem-
porary localizations again described by a Weierstrass or
Lévy process.

For example, in Figure 1 a single realization of the
Weierstrass random motions (oblique intervals) occasion-
ally intermitted by Weierstrass localizations (flat inter-
vals) is performed by our Monte Carlo simulation in
continuous time (dashed curve); its discretized presenta-
tion (solid curve) for the discretized time-step, e.g. for
∆t = 10 [r.u.]3, is also shown (the parameters used are
given in Table 1 where they are related to the open cir-
cle (◦)). By assuming a much shorter discretized time-step,
∆t = 1 [r.u.], the discretized representation was also ob-
tained which (unfortunately, in this resolution of the plot)
cannot be distinguished from the trajectory of the corre-
sponding continuous-time random walk process (dashed
curve). The run shown in Figure 1 can be considered as

3 Relative unit (abbreviation r.u.) means here the situation
where τ0 = τ ′

0 = 1, v0 = 1 and hence b0 = 1.
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Table 2. Microscopic parameters N ′, τ ′, N, τ and b building
diffusion exponents shown in Table 1.

Notation N ′ τ ′ N τ b
◦ 4 2.83 4 2.52 2.50
• 4 2.83 4 2.52 3/2

regarding a single session (or one trading day) since the
data extracted from the continuous-time process running
in the background have a high-frequency character (as
they are recorded at every ten minute interval) and they
are given only until the 360th minute.

By our algorithm we are able to simulate statistical
quantities needed for analysis of the empirical time series,
e.g., correlation functions.

5 Algebraically decaying autocorrelations

We apply the above algorithm to calculate our basic time-
dependent autocorrelation of centered absolute variations,
|∆X(t)|−〈|∆X(t)|〉, of the stock price (or the walker total
displacement),

K(t) = 〈[|∆X(0)| − 〈|∆X(0)|〉][|∆X(t)| − 〈|∆X(t)|〉]〉
= 〈|∆X(0)||∆X(t)|〉 − 〈|∆X(0)|〉〈|∆X(t)|〉 (8)

within the Weierstrass walks randomly intermitted again
by Weierstrass temporary localizations (which is, simul-
taneously, the autocovariance of the |∆X | stochastic vari-
able); here 〈. . .〉 denotes the standard moving-average. As
here, and till the end of this paper we use only discrete
time we omitted index n (cf. Sect. 1) the more so we use
the discretization step ∆t = 1 [r.u.] which for the assumed
range of time cannot allow us to distinguish between the
discrete and continuous time axes in the enclosed corre-
sponding Figures 1, 2, 4–8.

Note that our moving-average procedure was per-
formed (in all cases) within the fixed time-window hav-
ing the width of 7200 units (e.g. minutes when we assume
τ0 = τ ′0 = 1 min; then the trading time would be four
trading weeks), while the whole data block extends over
864 000 units (in the case of minutes it would be about
ten trading years).

In this paper we performed, for example, calculations
for two different points (marked by open (◦) and full (•)
circles) of the diffusion phase diagram shown in Figure 3,
belonging to two different phases (the Gaussian and non-
Gaussian ones, respectively). For these two points the even
moment of the total displacement of arbitrary order is
finite for finite time (cf. Sect. 3) and they are characterized
by v < 1 which means that longer and more durable walks
are slower. Hence, the single-step fractional moment of
arbitrary high order is also finite for these cases.

In these two cases we have temporal exponents 1 <
α′, α < 2. Therefore, the mean times 〈t〉walk = (1 −
1/N)/(1 − τ/N) and 〈t〉loc = (1 − 1/N ′)/(1 − τ ′/N ′) of
staying in the walking and localized states, respectively,
are finite (while the variances σ2

walk(t) = 〈t2〉walk−〈t〉2walk

Table 3. Weights pwalk and ploc.

Notation Weight pwalk Weight ploc

• , ◦ 0.44 0.56

Fig. 4. Comparison between (i) autocorrelation C(t) of the
variations of the walker displacement (curve C), and (ii) auto-
correlation K(t) of the absolute variations of the walker dis-
placement (curve K) both obtained for the Gaussian regime
(represented by a full circle on diffusion phase diagram shown
in Fig. 3).

and σ2
loc(t) = 〈t2〉loc−〈t〉2loc diverge). Hence, in these cases

the weights pwalk = 〈t〉walk/(〈t〉walk + 〈t〉loc) and ploc =
〈t〉loc/(〈t〉walk + 〈t〉loc) are not free parameters; for these
two cases they are equal and shown in Table 3.

In Figure 4 we compared the above defined non-linear
autocorrelation function K(t) with the related, linear one

C(t) = 〈[∆X(0) − 〈∆X(0)〉][∆X(t) − 〈∆X(t)〉]〉
= 〈∆X(0)∆X(t)〉 − 〈∆X(0)〉〈∆X(t)〉 (9)

for a chosen point denoted on the diffusion phase dia-
gram by a full circle (•), cf. Figure 3, (it is, simultane-
ously, the autocovariance of the ∆X stochastic variable).
As this point represents the Gaussian stochastic process,
it gives the autocorrelation C(t) plotted in Figure 4 as a
quickly decaying function of time. In contrast, the plot of
the non-linear autocorrelation function K(t), calculated
for the same process, suggests its much longer duration in
time.

In Figure 5 we compare the non-linear autocorrela-
tion function K(t) for two different points, denoted on
the phase diagram (plotted in Fig. 3) by the full (•)
and open (◦) circles, belonging to the Gaussian and non-
Gaussian phases, respectively. As it is seen, in both cases
the K(t) obeys a power-law in time over almost three
decades where the exponents for both cases are almost
equal.
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Fig. 5. Comparison between the autocorrelation functions,
K(t), for two different points of the diffusion phase diagram
(cf. Fig. 3): (i) solid curve I relates to the full circle (•) be-
longing to the Gaussian regime, while (ii) solid curve II relates
to the open circle (◦) belonging to the non-Gaussian one.

Fig. 6. Comparison between power spectra, S(f), for two dif-
ferent points of the diffusion phase diagram (cf. Fig. 3): (i) solid
curve I relates to the full circle (•) belonging to the Gaussian
regime, while (ii) solid curve II relates to the open circle (◦)
belonging to the non-Gaussian one.

This result is confirmed by the dependence of the
power spectrum S(f) on frequency f defined as usual,

S(f) =
∫ ∞

−∞
K(t) exp(−i2πf)dt, (10)

(cf. Fig. 6). By comparing results shown in Figures 5 and 6
it is seen that the sum of the corresponding slopes (relating
to the same points on the diffusion phase diagram shown
in Fig. 3) is equal to −1 as it should be (with an error of
a few percent).

Fig. 7. The variance of the length trajectory, σ2
L(t), for the

point of diffusion phase diagram denoted by the full circle (•)
which belongs to the Gaussian regime (cf. Fig. 3). The su-
perdiffusive behaviour governed by exponent 1.52 is well seen
due to the corresponding fit I (shown by thin solid line partially
covered by the thick one obtained by Monte Carlo simulations
performed within the Weierstrass walks randomly intermitted
by localizations).

In the next section we discuss the above intriguing re-
sults, however, their detailed interpretation is still an open
question.

6 Discussion and concluding remarks

We found that the following two-stage procedure of ex-
tracting the non-linear long-term autocorrelations be-
tween single steps of the walker from the GCTRW, which,
originally (in continuous time), doesn’t exhibit this type
of correlations, is necessary: (i) discretization of time (cf.
Sect. 1), (ii) transformation from the empirical to the dual,
one-sided random walk (cf. Fig. 8); in particular, this sec-
ond stage requires explanation.

Application of the time discretization procedure with
time-step ∆t automatically introduces discretization of
the space variable by assuming ∆X(tn) = X(tn + ∆t) −
X(tn), n = 0, 1, 2, . . ., as the corresponding spatial single-
steps, here X(tn) and X(tn +∆t) are the positions of the
walker on the basic (continuous-time random walk) trajec-
tory at successive discrete time instants. This is how the
empirical trajectory in Figure 8 was defined while the dual
trajectory (also shown there) can develop only in the posi-
tive X-direction as it was done by transition from ∆X(tn)
(connected with the empirical trajectory) to its absolute
value |∆X(tn)|. As it is seen, this one-sided random walk
obeys the feature of non-negativity of their increments; in
the case of Lévy processes this relates to Lévy subordi-
nates considered in [29].

It is the long-term autocorrelations, decaying accord-
ing to the power-law, that we found to occur between the
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Fig. 8. Empirical and dual trajectories in discretized time
where the discretization step ∆t = 1 [r.u.]. As it is seen, the
dual trajectory expands only in the positive X-direction.

single-step displacements for the dual discrete-time ran-
dom walk (performed on the basic continuous-time ran-
dom walk). This walk can be treated as an extreme case of
directed or forward walks (with no reversals [8]) which al-
ways exhibit autocorrelations; we pointed out, to our sur-
prise, that they are long-term ones even for the Gaussian
regime which can be interpreted as a kind of ‘domino
effect’.

Complementarily, we consider the displacement L(tn)
of the walker for the dual random walk as it is the current
length of the corresponding empirical trajectory,

L(tn) =
n−1∑
j=0

|∆X(tj)|. (11)

The stochastic character of the L variable arises only
from the stochastic character of the velocity with which
the walker covers each space interval |∆X | within the time
interval ∆t. Hence, we can present the variance of the
stochastic variable L(tn) in the form,

σ2
L(tn) = 〈L2(tn)〉 − 〈L(tn)〉2

= nK(0) + 2
n∑

j=1

(n− j)K(tj), (12)

since the moving-average procedure doesn’t distinguish a
particular instant of time as the origin, leading to the sta-
tionary results. Analogously to the walker mean-square
displacement (which relates to the autocorrelation C), the
variance σ2

L is related to the autocorrelation function K.
We proved that even in the Gaussian regime this quantity
depends superlinearly on time for long times (cf. Fig. 7)
which is the result of our previous observation (see Sect. 5)
that the autocorrelation function K(t) decays in time ac-
cording to the power-law whose exponent is essentially
smaller than 1 (cf. Fig. 4). Hence, we have two exponents

bonded (with a good approximation) by its sum which
equals 2, as it should be4.

We can confirm that both the mean-square displace-
ment and the length of the walker trajectory should be
used as independent global random walk variables subject
to complementary scaling relations. This was already con-
sidered, for example, in the context of random walk both
on deterministic and probabilistic fractals [21–23].

Concluding we can say that in this work we developed:
(a) a theoretical foundation and hence (b) an efficient al-
gorithm which makes possible to simulate in continuous-
time a quite realistic time series reflecting both the
active and passive behaviour of the system for any time-
horizon which exhibits scaling phenomena. The approach
depends on several stochastic and kinematic parameters
which can be detected by comparison with empirical data
after performing a time discretization procedure. For ex-
ample, (c) we applied this approach to study autocor-
relations of the absolute variation of the walker single-
step displacements within the Gaussian regime, which we
found to decay according to the power-law in contrast to
the short-time autocorrelations of the usual variation of
the walker single-step displacements also present in the
model. We suggest that (i) long-time autocorrelations are
extorted by the discretization procedure (used to obtain
data ready for comparison with the corresponding empiri-
cal ones), where the width of the time-step is (most often)
incommensurable with the time interval needed to pass by
the walker a single-step distance. Besides, we argue that
(ii) we deal with an extreme case of forward long-time au-
tocorrelations as no reversal walker steps are performed.
In our work we presented rather observations than expla-
nations and we suggested that the last should involved
some aspects of random walk on a random walk [24–27]
or more general random walk on random or disordered
(e.g., fractal) structures [16,21–23,26]. We suppose that
our approach can be applied to study, not only financial
but also other, for example, hydrological or even meteo-
rological time-series5.
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